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The evolution of the electronic structure of a solid as it is formed from large interatomic separations 
to its equilibrium lattice configuration is analyzed. The importance of electronic correlations in 
the narrow-band regime is emphasized, particularly with regard to transport behavior. First, the 
case of a monovalent solid, such as Na, is analyzed in detail, and an effective one-electron represent- 
ation, exact in the atomic limit, is introduced. It is shown that the ordinary band approximation 
fails miserably in this limit. Next, the more realistic case of a transition-metal oxide is considered& 
thelimit of strong correlations, it is emphasized that information deduced from optical experiments 
should not be used to analyze transport data within the band approximation, since the effective elec- 
tronic density-of-states diagram can differ significantly from that derived from optical results. 
Finally, some fundamental difficulties in our present understanding are discussed. 

I. Introduction 

Transition-metal oxides, being fundamental 
components of many minerals, ores, ceramics, 
and glasses have been known and studied for 
as long as any other class of materials; how- 
ever, they still remain among the most poorly 
understood solids in several fundamental 
respects (1-3). Initial interest in transition- 
metal oxides stemmed from the fact that they 
seemed to be ideal materials in which to study 
d-band electrons. In this respect, they are 
superior to the transition metals, in which the 
d-band is overlapped by the next higher s 
band, and thus a great deal of s-d hybridiza- 
tion is always present. A sketch of the 3d 
and 4s states in a typical iron-group transition 
metal as a function of inverse interatomic 
spacing is shown in Fig. l(a). In such plots, 
the atomic limit (i.e., intinite separation) is 
the discrete spectrum on the extreme left; 
the sketch represents the spreading of the 

atomic levels into bands as the atoms are 
brought closer together. Since the 4s wave 
functions extend farther from the nuclei than 
the 3d functions (both because of the higher 
principal quantum number and the greater 
number of radial nodes), the 4s band spreads 
more quickly with decreasing interatomic 
separation. In the solid at the equilibrium 
separation, a,,, the 3d band lies entirely within 
the 4s band, and there is a net transfer of about 
one electron from the 4s band to the 3d 
relative to the ground-state atomic configura- 
tion (usually4sZ 3d”). The cohesive energy ofthe 
solid, as in most metals, arises almost entirely 
from the partially filled nature of the 4s and 3d 
bands; although the 3d band is narrow, the 
fact that there are a large number of states (10 
per atom) in the band results in a significant 
3d contribution to the cohesive energy. 
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Figure l(b) shows the analogous plot for a 
typical transition-metal oxide. An immediate 
difference between the two sketches is the 
order of the atomic energy levels of the metallic 
ion-the 3d states are below the 4s states in the 
oxide. The reason for this apparent discrepancy 
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FIG. 1. Sketch of the energy-band structure near the 
Fermi energy EF, as a function of the average inverse 
interatomic spacing for (a) a transition metal, M, and 
(b) a transition-metal oxide, MO. E,, represents the 
average electronic energy in the ground state of the 
isolated ions; (E. - EC) represents the average ground- 
state energy of an electron at the equilibrium inter- 
atomic separation, a0 (i.e., the minimum electronic 
energy). 

is that for the oxide we must consider the 
atomic limit of infinitely separated ions, 
M2+ and 02-, rather than neutral atoms. For 
the cation, M2+, the two electrons that have 
been transferred are the 4s electrons, and the 
ground-state configuration is just 3d”. This 
effect can be understood by recalling that the 
reduction in energy of the s states relative to 
the p, d, f, , . . states in any given electronic 
shell is due to their deeper penetration of the 
core; s electrons come relatively closer to the 
nucleus, and thus take better advantage of the 
greater positive charge density within the core. 
However, when the atom is ionized, the outer 
electrons are no longer present, and the effect 
of penetration is reduced; this in turn reduces 
the s-p energy difference, thus increasing the 
energy of the 4s levels relative to the 3d levels. 

There are of course, several other differ- 
ences between transition metals and their 
oxides. An additional complication in the 
oxides is the presence of anion energy levels. 
The highest occupied oxygen states are the 2p 
orbitals; their position above the cation 3d 
levels in the atomic limit of Fig. l(b) reflects 

the fact that the ground state at infinite 
separation is neutral M and neutral oxygen, 
rather than M2+ and O*-. However, as the 
interatomic spacing decreases, the electro- 
static attraction between cation and anion 
sharply decreases the energy of the 2p states 
relative to that of the 3d and 4s states, thus 
favoring electronic transfer from metal atom 
to oxygen and stabilizing the ionic configura- 
tion. An important consequence of this is the 
fact that the cohesive energy of the solid 
primarily arises from the electrostatic attrac- 
tion between cation and anion, rather than 
from any bandwidth effects. (Of course, in 
reality, there exists a resonance between ionic 
and covalent bonding which minimizes the 
energy and produces a ground state which is 
only partially ionized. The covalent bonding 
arises from 2p-48 hybridization. If the covalent 
contribution to the cohesive energy exceeds 
the ionic contribution, the lowest band in 
Fig. l(b) should be more properly labelled 
as a 2~4s bonding band, the highest as a 
2~~4s antibonding band. In this case, the 
relative energy variation with interatomic 
spacing would then be much smaller. Some 
2p-3d hybridization can also be present, as 
will be discussed subsequently.) 

It is immediately evident from Fig. l(b) that 
for transition-metal oxides with partially filled 
d subshells, the Fermi energy EF lies within the 
d band. The band theory of conduction is then 
unambiguous-unless a splitting of the d 
band opens up along the entire Fermi surface, 
all such solids should be metallic. But given the 
symmetry of several important oxides, e.g., 
COO, such a splitting cannot exist (4). The 
fact that Co0 is an excellent insulator provides 
a major challenge to our understanding of the 
electronic properties of solids. 

It has now been accepted that Mott’s 
relatively early resolution of this problem 
is basically correct (5, 6). Mott pointed out 
that for narrow energy bands the decrease in 
electronic energy due to band formation and 
subsequent delocalization, a quantity pro- 
portional to the bandwidth for any fixed 
configuration, can be quite small and might 
not overcome the increase in electrostatic 
repulsion brought about by the simultaneous 
appearance of two delocalized electrons on the 
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same ion core. The latter energy, as we shall 
see in Section II, is essentially neglected in the 
usual band theory of solids. If this situation 
occurs, the ground state of the material is one 
in which the appropriate electrons are localized 
on their respective ion cores, and metallic 
conduction cannot occur. If no other electrons 
occupy partially filled bands, the material 
is called a Mott insulator. It is now evident 
that Co0 is a Mott insulator, because of the 
extremely narrow 3d bandwidth. 

It is relevant to ask why the 3d bands of 
many transition-metal oxides are sufficiently 
narrow to preclude delocalization, when the 
same is not true for the corresponding transi- 
tion metals. (The latter, with the possible 
exception of Mn, all exhibit a 3d contribution 
to their cohesive energy, strong evidence for 
band formation.) The answer is once again 
evident from the sketches in Fig. 1. In the 
metals, the overlap of the 3d and 4s bands 
leads to strong hybridization, effectively 
widening the 3d band. On the other hand, in 
the oxides, the significant energy separations 
between the 3d bands and both the 2p and the 
4s bands inhibit hybridization. For oxides in 
which the 3d band is close to or overlaps 
either the 4s band or the oxygen 2p band, 
delocalized 3d electrons become possible. 
Furthermore, particularly in the 4d and 5d 
transition-metal oxides, the d band itself 
could be sufficiently wide to support metallic 
conduction. Thus, the existence of good d-band 
metals such as ReO, (7) is not difficult to 
understand. The most fundamental problem 
remaining, however, is how to predict a 
priori which oxides are Mott insulators and 
which are well described by ordinary energy- 
band theory. It is this problem which is the 
major theme of this paper. 

II. Effects of Electronic Correlations in Narrow 
Energy Bands 

The best starting point for attempting to 
understand the influence of electronic corre- 
iations on the electronic structure of solids 
is once again the atomic limit, l/a = 0. 
This limit can be completely analyzed (assum- 
ing that the energy-level structure of all the 
relevant atoms and ions is known) and easily 

points up the source of the failure of ordinary 
band theory in Mott insulators. In addition, 
the 3d band of several transition-metal oxides 
appears to be much more appropriately 
described by the atomic limit than by the band 
limit in which correlations are completely 
neglected. 

As a simple example, let us consider the 
problem of N sodium atoms in a body- 
centered cubic array. Let a be the nearest- 
neighbor separation. We should be able to 
sketch the energy-band structure as a function 
of l/a, analogous to Fig. 1. However, an 
analysis of the atomic limit (a --f a) immedi- 
ately shows the qualitatively incorrect fea- 
tures of such an approach in the narrow-band 
regime. 

Sodium consists of an ion core of the Ne 
configuration (ls22s22p6) plus an outer 3s 
electron. Since it costs at least 47 eV to remove 
an electron from a Na+ core, we need consider 
only the 3s and higher levels in an analysis 
of the low-energy electronic structure of Na. 
Let us set the energy of a Na+ core in its ground 
state as the zero of energy. If we restrict 
ourselves to only 3s outer orbitals, four many- 
body states are then possible for each atom, 
as indicated in Fig. 2(a). Highest in energy 
is an unoccupied Na’ ion at E = 0; this state 
is nondegenerate. Next is a Na+ core occupied 
by a single 3s electron, i.e., a Na atom in its 
ground state; since the 3s electron can have 
its spin either up or down, the state is doubly 
degenerate. The energy of this state is known 
exactly, since it is below the energy of the Na+ 
core by the ionization potential of Na, 
5.1 eV. In general, we set this state at E,,, 
where E. is the negative of the ionization 
potential. Finally, since we can at most doubly 
occupy the 3s level, there is a nondegenerate 
state representing a Na-ion in its ground state. 
Both 3s electrons are attracted to the Na+ core 
with an energy E,, but since two electrons on 
the same atom must also repel each other, 
the total energy of the Na- state is not 2& 
but somewhat higher. If we call the repulsive 
energy between the two 3s electrons on the 
same ion core U, then the Na- state is at 2E, -t- 
U. It is easily seen that since the energy of the 
negative ion is less than that of the atom by 
the electron affinity, the U for any atom is just 
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FIG. 2. Energy level diagram for a monovalent solid 
(e.g., Na) in the atomic limit (large interatomic 
separation). The energy of a singly ionized atom is 
taken as the zero of energy. (a) Single atom levels: 
(i) Many-body energy values; (ii) effective single- 
particle representation; the level at J& + U falls to 
E. if the level at E. is unoccupied. (b) N-atom solid: 
(i) Many-body energy values; (ii) effective single- 
particle energy levels for the ground-state configuration 
(iii) ordinary band approximation. 

the difference between its ionization potential 
and its electron affinity. For Na, the electron 
affinity is 0.5 eV, and this U = 4.6 eV. 

For Natoms in the atomiclimit, the possible 
many-body energy levels range from 0 to 
2NE, + NU, and the degeneracies are in- 
creased multifold. However, if we wish to 
represent the states of a real solid, we should 
require a fixed total number of 3s electrons, N. 
Thus, only a much smaller number of many- 
electron states are possible. Their energies 
can be represented by the expression, 

E,,=NE,+nU, (1) 
where n is the number of doubly occupied 
(i.e., Na-) ion cores; n can vary from 0 (all 
N atoms singly occupied) to N/2 (half of the 
atoms unoccupied Na+ cores, the other half 
doubly occupied Na- ions). The degeneracy of 
state n is 

g, = iv!/@ !(N - n) !) 2(N-2n), (2) 
since the (N - 2n) singly occupied atoms can 
have either sign of spin. Thus, the ground 
state is 2N-fold degenerate. The energy levels 
are shown in Fig. 2(b). 

An important result of this analysis is that 
the exact many-body states in the atomic limit 
can be represented by an equivalent one- 
electron picture, provided the one-electron 
states are taken to be occupation-number 
dependent in a simple manner. This represent- 
ation is also shown in Fig. 2 for both the single- 
atom and the N-atom situations. For a single 
atom, the choice of the energy of the Na+ ion 
core as the zero of energy allows us to account 
for all the many-body states with just two 
one-electron levels, one for spin-up electrons 
and the other for spin-down electrons. If the 
ion core is unoccupied, both states are at Eo. 
However, as soon as either one of these states 
becomes occupied, the other rises to E,, f U. 
Such a shift of states with occupation numbers 
is the price we must pay for a one-electron 
representation of a system in which correla- 
tions are important. It is easy to see that this 
representation recaptures the many-body 
states exactly: Either both levels are un- 
occupied (E = 0), one level is occupied by an 
electron of either spin (E = E,), or both levels 
are occupied (E = 2E, + U). It is clear that the 
atomic limit of the N-atom problem also can 
be represented by one-electron states at either 
E,, or E. + U, the latter state existing only if the 
corresponding atom is already occupied by 
an electron of the opposite spin. We can look 
at this effective one-electron picture as a 
“band” of (N + n) states at E. and (N - n) 
states at E,, + U. Since (N - n) of the former 
and n of the latter states are occupied, the 
total energy is E = NE, + nU, in agreement 
with Eq. (1). 

For the ground state of the N-atom problem 
with one electron per atom, 12 = 0, the lower 
band is exactly filled and the upper band ex- 
actly empty, as is shown in Fig. 2(b)(ii). 
Since the energy gap between the bands is 
U, of the order of 5 eV, the state represents 
that of an insulator, an explicit demonstration 
of Mott’s original suggestion. Note that the 
material is insulating despite the fact that the 
ground state is 2N-fold degenerate; this de- 
generacy exists solely because of the freedom 
to flip a spin on any site, transitions which do 
not carry any current. 

All of this might appear to be trivial, if no 
thought is given to the strikingly distinct 
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results obtained using ordinary band theory. tronic repulsion included on the average; 
Band theory neglects electronic correlations, the second term adds an energy U every time 
and the one-electron states do not then depend a spin-up and a spin-down electron are simul- 
on occupation numbers. Thus, only a single taneously present on an ion core; the third 
3s band exists for Na, having exactly 2N term is just a constant that subtracts off the 
states at all times. In the atomic limit, l/a = 0, average value of the intraionic electronic 
all 2N states are degenerate and located at the repulsions which otherwise would be counted 
average energy E. + U/2. Note that this is not twice (in both previous terms). The Hubbard 
quite so bad as it first seems, since it is exact Hamiltonian has the advantage that, as we 
when an atom is unoccupied or doubly shall show, it is exact in both the atomic and 
occupied. (Thus, it is a good approximation the band limits, and is thus a good model for 
when the 3s band is nearly full or nearly empty.) interpolation between them. Provided the 
But it always overestimates the energy of a material is not ferromagnetic, the average 
singly or occupied atom; this is because value of the correlation term in Eq. (3) is 
neglect of correlations does not allow for two just 
electrons to correlate their motions and avoid 
each other. But the critical difference between 
this approximation and the exact approach 

u~n,t(n~~>=(1/2)U~nit 
i 

as far as the predicted electrical properties 
= (N/4) U, (4) 

are concerned is that now the band is half since the average number of down-spin 
jilled for the case of one electron per atom. electrons is l/2 and the total number of up- 
Thus, band theory predicts metallic conduction spin electrons is N/2. Thus, the one-electron 
even in the atomic limit. approximation of the correlation term is just 

It would indeed be useful if a model existed cancelled by the constant term, demonstrating 
which could interpolate between the atomic that Eq. (3) reduces to the ordinary band 
limit for large a and the band limit, which approximation in the one-electron limit. 
should be accurate for small a (including near On the other hand, in the atomic limit, 
the equilibrium interatomic separation for 
Na, a fact that follows from the known appli- 

E(k) = E,, + U/2, 

cability of the band approximation for the as discussed previously. The sum in the first 
alkali metals). Fortunately, such a model term of Eq. (3) then gives 
indeed exists. Hubbard (8) suggested the use 
of the Hamiltonian, NE, + (N/4) U. (5) 

H= C E(k)nk,,+ UCnitntl -(N/J)U, 
This sum is nontrivial, since it would appear 

k.a i 
to give N,,Eo + NU/2, rather than Eq. (5); 

(3) however, simply adding the one-electron 
energies to obtain the total energy is incorrect, 

where E(k) are the one-electron energies as a since it counts the interaction terms twice. 
function of the wave vector, k, nkqo are the The correct answer, Eq. (5), is easily inter- 
occupation. numbers of the Bloch state of preted, however. In the atomic limit of the 
wave vector k and spin 0, and nio are the one-electron approximation, placing the N 
occupation numbers of electrons of spin electrons in the 2N possible degenerate states 
d localized on the ion core whose equilibrium (all at E = E. + U/2) must be done randomly, 
position is the lattice vector RI. The Hamil- since all electrons but the one under considera- 
tonian (3) can be obtained from the appro- tion are treated on the average. Thus, N/4 
priate many-body Hamiltonian for a solid by ion cores are unoccupied, N/2 are singly occu- 
replacing the electronic Coulomb interaction pied, and N/4 are doubly occupied. Since each 
by a short-range repulsion in which two elec- of the doubly occupied ion cores contribute 
trons repel only when they are localized on the an additional repulsive energy U, the total 
same ion core. The first term in Eq. (3) is the energy in the one electron approximation is 
band approximation, including the elec- properly given by Eq. (5). Hence, in the atomic 
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limit the Hubbard approximation gives 

,E=N,E,,+nU, (6) 
where n is the number of doubly occupied 
ion cores. Since Eq. (6) agrees with the previous 
result, Eq. (l), the Hubbard Hamiltonian is 
also exact in the atomic limit. 

As the interatomic spacing is reduced from 
large values, a sketch of the spreading of the 
two quasi one-electron levels at E. and E. + U 
is shown in Fig. 3(a). The two bands spread 
with increasing l/a and eventually overlap at 
a critical point for which the bandwidth 
is approximately equal to U (3,9). This point 
represents the critical density at which an 
insulator-metal transition, known as a Mott 
transition, occurs. The average energy per 
electron is indicated on the sketch, and is a 
minimum at the equilibrium spacing, a,. 
Note that in the insulating region, no cohesive 
energy exists; the minimum of energy either 
occurs at metallic densities or else no solid 
forms. The reason for this is that for metallic 
bonding, the cohesive energy comes almost 

r I I I 

w” 
l/cl0 

l/l30 

FIG. 3. (a) Sketch of the energy-band structure as a 
function of inverse interatomic separation for a 
monovalent solid in the Hubbard approximation. 
EF indicates the Fermi energy and <E) the average 
ground-state electronic energy, (I?,, - EC) represents 
the minimum electronic energy. Shaded states are 
filled at T= 0. (b) Band approximation for the same 
physical problem. For the solid shown here, the equi- 
librium interatomic separation is well in the metallic 
region. 

entirely from the partial occupancy of the 
band; if we assume a crystal structure appro- 
priate to metallic bonding but do not have any 
band overlap, there is no cohesion. We might 
be tempted to conclude that no Mott insulators 
exist. However, this neglects the possibility 
of electrons other than the localized ones 
contributing the cohesion. In fact, a glance 
at Fig. l(b) shows that the cohesive energy of 
a transition-metal oxide can arise solely from 
ionic binding, without the necessity of a 
partially filled band contribution. Similarly, 
the formation of a filled 2~4s bonding band 
entirely from covalency effects is sufficient to 
yield cohesion without any additional metallic 
bonding. Thus, transition-metal oxides can 
be, and indeed often are, Mott insulators. 

In Fig. 3(b), the band approximation analo- 
gous to Fig. 3(a) is sketched. It is terribly 
in error in the Mott-insulating region, but 
it approaches the more accurate Hubbard 
approximation long before densities appropri- 
ate to ordinary metals such as Na are reached. 
Unfortunately, the Hubbard approximation 
has proved difficult to analyze in the region 
near the Mott transition, and no calculation 
appropriate to any real material has even been 
attempted in this regime. However, as shall 
be discussed in Section III, for some Mott 
insulators, all relevant bands appear to 
be either near the band limit or the atomic 
limit, and the actual electronic structure can 
be approximated without the necessity for 
sophisticated computation. 

III. Electronic Structure of Transition-Metal 
Oxides 

It might be expected that the metallic oxides 
should be well approximated by ordinary 
band theory, and, in fact, there is strong 
evidence that such is the case for ReO,. 
The band-structure calculation of Mattheiss 
(IO) has had success in interpreting several 
experiments which measure the shape of the 
Fermi surface (II, 12). On the other hand, 
some metallic oxides appear to be only border- 
line metals (13,14), and electronic correlations 
must be taken into account. It is, of course, 
not surprising that ordinary band calculations 
have not yet had much success at all in ex- 
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plaining the experimental data taken on Mott 
insultors (15). 

Recently some progress has been made in 
understanding the electronic structure of the 
Mott-insulating transition-metal oxides. One 
particularly promising approach is the self- 
consistent-field XCY cluster method by Slater 
and Johnson (16). In such calculations, the 
ground state of a cluster consisting of a central 
cation surrounded by its nearest-neighbor 
anions is self-consistently expressed in terms of 
one-electron molecular orbitals, character- 
ized by their energies, occupation numbers, 
and electronic charge-density distributions. 
This method should be expected to give good 
results in predicting the energies of optical 
transitions involving localized electrons; thus 
it appears to be particularly suited to Mott 
insulators, which have a large density of 
localized states near the Fermi energy. 
Johnson et al. (17) have applied the method to 
NiO, and found good agreement with X-ray 
photoemission data (15). The Xcr calculations 
can be expected to be extremely useful for 
analysis of the optical spectra of all of the 
Mott insulators, but it is not yet clear whether 
they will be of use in either interpreting trans- 
port behavior or predicting if a given solid is 
insulating or metallic. 

An entirely different approach has also been 
used to analyze both optical and transport 
properties of Mott insulators (18, 19). This 
method begins with the atomic limit and 
adjusts the free-ion energy levels by accounting 
for the effects of the Madelung potential, 
screening, covalency, and crystalline-field 
splittings calculated at the actual equilibrium, 
configuration of the solid. These give the 
appropriate energy levels which should spread 
approximately symmetrically into bands, 
much as in Fig. 3(a). The bandwidths for the 
2p and 4s bands can then be estimated from 
ordinary band calculations or from photo- 
emission experiments. Good agreement with 
the optical spectrum of NiO, for example, is 
found if the 3d band of this Mott insulator is 
taken as less than 0.1 eV wide (18); this very 
narrow bandwidth is consistent with recent 
uv-photoemission results (20), although diffi- 
cult to understand theoretically. Since corre- 
lations are explicitly taken into account in 

this approach, an ordinary band-structure 
diagram is inappropriate. However, an effec- 
tive one-electron plot analogous to those 
discussed in Section II can be used (2Z), and 
such a diagram is shown in Fig. 4 for NiO. 
Ordinary bands are drawn to the left of the 
energy axis, localized states to the right. 
States shown as dashed lines represent 
possible optical transitions from occupied 
localized states only. 

The great advantage of this particular 
approach is its ability to also account for 
transport properties of both pure and doped 
Mott insulators. As in ordinary semiconduc- 
tors, the results of nonstoichiometry or doping 
are donor- or acceptor-like states in the 
energy gap, and these states then dominate 
the electrical conductivity of the material. 
But in the case of strongly correlated states, 
the entire effective one-electron density-of- 
states must be recalculated (Z8), and un- 
expected results are often obtained. To illu- 
strate the reason for this, consider Li-doped 
NiO. Li enters NiO substitutionally for Ni, 
but since it is monovalent, charge neutrality 
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FIG. 4. Optical density-of-states sketch for NiO. 
Extended states are shown to the left, localized states 
to the right. States which are occupied at T = 0 are 
shaded. States enclosed by dashed lines are available 
for excitations only from filled localized states. An 
asterisk refers to excited crystalline-field-split states. 



is maintained only by creation of Ni3+ ions. 
Ni3+ can be looked at as acceptor-like, 
since it represents an intrinsic Ni2+ ion with 
an extra hole. This hole can accept an electron 
either from the 3d band or the 2p band. A 
glance at the optical density-of-states diagram 
of Fig. 4 suggests that the latter process is 
unlikely to contribute much to the electrical 
conductivity, since the 2p band is 1.5 eV 
below the 3d band; despite the much higher 
mobility expected in the wider band, no 
observable hole density should be present 
below at least 1500 K. However, this is a 
faulty analysis. Note that the optical 2p-3d 
band separation follows from the difference 
in energies of the two atomic-limit transitions : 

3da -+ 3d74s (7) 

2p6 -I- 3ds --f 2p5 + 3da4s. (8) 

The latter excitation is highly energetic due to 
the relatively Ihigh energy of the 3da4s (NP) 
configuration. On the other hand, when some 
Ni3+ ions are present, a hole in the 2p band 
can be obtained via the transition : 

2p6 + 3d’ --f 2p= + 3da. (9) 

This transition does not require the formation 
of a Ni+ ion and requires much less relative 
energy than Eq. (8). Consequently, when Ni3+ 
ions are present, it does not require an addi- 
tional 1.5 eV to excite a hole in the 2p band; 
in fact, the two electronic excitations occur 
at virtually the same energy (18). Once again, 
we must pay a price for treating a strongly- 
correlated system in an effective one-electron 
representation-theelectrical density-of-states 
can be sharply different from the optical den- 
sity-of-states. An estimate of the former for 
L&doped NiO is shown in Fig. 5. This analysis 
helps to resolve a major problem for NiO-the 
apparently incompatibility of highly mobile 
transport in a very narrow band; the resolution 
is that the conductivity takes place predomin- 
antly in the relatively wide 2p band, some of 
whose states are made much more energetic- 
ally accessible for transport by the presence of 
Ni3+ ions in the material. 

FIG. 5. Electrical density-of-states sketch for Li- 
doped NiO. Extended states are shown to the left, 
localized states to the right. States which are occupied 
at T= 0 are shaded. Partial self-compensation by 
means of oxygen vacancies is assumed, pinning the 
Fermi level in the lowest acceptor level at low tempera- 
tures. V,’ and V,” refer to singly and doubly ionized 
x vacancy levels, respectively. 

The major disadvantages of this method are 
the empirical means used for estimating screen- 
ing, covalency effects, and 3d bandwidth, 

the lack of a quantitative scheme for improving 
the approximations systematically, and the 
inability to predict a priori which materials 
are Mott insulators. Koiller and Falicov (22) 
have recently introduced another semi- 
empirical method of calculation which differs 
from the one described above in only a few 
details. However, a criterion for predicting 
which materials are Mott insulators is 
suggested-if the energy of the bottom of the 
4s band is significantly greater than the ground 
state energy of the 3d” configuration of the 
transition-metal ion, it is concluded that the 
material is a Mott insulator. This criterion 
appears to work for the iron-group monoxides, 
with the exception of VO and FeO. However, 
it is not yet clear whether or not it is more 
generally applicable, and it is certainly a 
risky means for prediction. Obviously, overlap 
of the 3d” ground state with either the 4s 
or the 2p bands is su@ient for metallic 
behavior. but it mav not be necessary. For 
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example, the band calculation of Mattheiss 
(20) for ReO, indicates a 5d band well 
separated from the 2p and 6s bands, yet cap- 
able of highly mobile metallic conduction. 
Since a small, negative Knight shift is ob- 
served in ReO, (23), there is also experimental 
evidence against significant s-d hybridization 
in this material. 

IV. Conclusions 

The most fundamental unsolved problem 
in the transition-metal oxides is still as it was 
40 years ago, a method for a priori prediction 
of which materials are metallic and which 
insulating. It is possible that this problem 
can be reduced, for example, to an analysis of 
the amount of d-s or p-d hybridization or, 
more likely, to a calculation of the relative 
magnitudes of the d bandwidth and the intra- 
ionic correlation energy, U. However, no 
such calculations have yet been accurately 
carried out for any real oxide, either Mott 
insulator or metal. 

Although as discussed in Section III, a 
consistent explanation of the electrical and 
optical properties of one well-studied material, 
NiO, does exist, this analysis is far from 
unique (24) and suggests at least one additional 
problem-Why should the 3d bandwidth of 
NiO be more than an order of magnitude 
narrower than predicted by band calculations ? 
This problem has ominous overtones, since 
the maximum band narrowing within the 
Hubbard model appears to be only a factor 
of two (25). However, there is direct experi- 
mental (15, 20) as well as analytic (18) evi- 
dence for these very narrow bandwidths 
suggesting that even the Hubbard model 
may be inadequate for a material such as 
NiO, a conclusion that is particularly dis- 
couraging in view of the difficulties in applying 
this model to a real material. 

In conclusion, it should be noted that many 
other fundamental problems, such as a 
consistent explanation for the diverse magnetic 
properties of these materials (Z-3) or an 
understanding of the multitude of insulator- 
metal transitions (4), have not even been 

touched on in this discussion. Clearly, a 
great deal of work remains to be done. 
However, to end on an optimistic note, the 
hope now exists that the renewed interest 
in oxides arising from their potential appli- 
cations will stimulate advances in resolving 
some of these difficulties before long. 
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